Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331475

RESUMO

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.


Assuntos
Braquidactilia , Proteína Relacionada ao Hormônio Paratireóideo , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Braquidactilia/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Metaloproteases , Proteínas ADAM
3.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
4.
Nat Cell Biol ; 23(10): 1073-1084, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616024

RESUMO

Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.


Assuntos
Neoplasias da Mama/patologia , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Integrina beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Clatrina/genética , Dinaminas/genética , Feminino , Humanos , Integrina beta1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas rab de Ligação ao GTP/genética
5.
EMBO J ; 40(6): e106094, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33576509

RESUMO

The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.


Assuntos
Poliubiquitina/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Simulação por Computador , Modelos Estruturais , Domínios Proteicos , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Enzimas de Conjugação de Ubiquitina/genética
6.
Cell Syst ; 10(2): 125-132, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32105631

RESUMO

How do cells maintain relative proportions of protein complex components? Advances in quantitative, genome-wide measurements have begun to shed light onto the roles of protein synthesis and degradation in establishing the precise proportions in living cells: on the one hand, ribosome profiling studies indicate that proteins are already produced in the correct relative proportions. On the other hand, proteomic studies found that many complexes contain subunits that are made in excess and subsequently degraded. Here, we discuss these seemingly contradictory findings, emerging principles, and remaining open questions. We conclude that establishing precise protein levels involves both coordinated synthesis and post-translational fine-tuning via protein degradation.


Assuntos
Biossíntese de Proteínas/fisiologia , Proteínas/metabolismo
7.
Mol Cell ; 72(1): 84-98.e9, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220558

RESUMO

Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation.


Assuntos
Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional/genética , Proteômica , Proteínas Ribossômicas/genética , Humanos , Espectrometria de Massas , Mitose/genética , Fosforilação/genética , Polirribossomos/genética , Proteoma/genética
8.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197081

RESUMO

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Erros Inatos do Metabolismo dos Carboidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Monossacarídeos/deficiência , Mutação/genética , Peptídeos , Ligação Proteica , Proteômica/métodos
10.
Mol Cell Proteomics ; 16(1): 73-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852748

RESUMO

Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.


Assuntos
Encéfalo/metabolismo , Proteômica/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Mapas de Interação de Proteínas
11.
Cell ; 167(3): 803-815.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720452

RESUMO

Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.


Assuntos
Estabilidade Proteica , Proteínas/metabolismo , Proteólise , Alanina/análogos & derivados , Alanina/química , Aneuploidia , Linhagem Celular , Química Click , Amplificação de Genes , Humanos , Cinética , Cadeias de Markov , Complexo de Endopeptidases do Proteassoma/química , Biossíntese de Proteínas , Proteínas/química , Proteínas/genética , Proteoma , Ubiquitina/química
12.
Mol Cell Proteomics ; 15(8): 2791-801, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27215553

RESUMO

The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20-50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a "cleaned search" strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation.


Assuntos
Peptídeos/metabolismo , Proteínas/análise , Proteômica/métodos , Algoritmos , Bases de Dados de Proteínas , Células HEK293 , Humanos , Peptídeos/química , Proteômica/normas , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
13.
Nat Methods ; 13(2): 165-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657557

RESUMO

RNA-sequencing protocols can quantify gene expression regulation from transcription to protein synthesis. Ribosome profiling (Ribo-seq) maps the positions of translating ribosomes over the entire transcriptome. We have developed RiboTaper (available at https://ohlerlab.mdc-berlin.de/software/), a rigorous statistical approach that identifies translated regions on the basis of the characteristic three-nucleotide periodicity of Ribo-seq data. We used RiboTaper with deep Ribo-seq data from HEK293 cells to derive an extensive map of translation that covered open reading frame (ORF) annotations for more than 11,000 protein-coding genes. We also found distinct ribosomal signatures for several hundred upstream ORFs and ORFs in annotated noncoding genes (ncORFs). Mass spectrometry data confirmed that RiboTaper achieved excellent coverage of the cellular proteome. Although dozens of novel peptide products were validated in this manner, few of the currently annotated long noncoding RNAs appeared to encode stable polypeptides. RiboTaper is a powerful method for comprehensive de novo identification of actively used ORFs from Ribo-seq data.


Assuntos
Ribossomos/metabolismo , Células HEK293 , Humanos , Fases de Leitura Aberta , Biossíntese de Proteínas/genética , Ribossomos/genética , Transcriptoma
14.
Genome Biol ; 16: 179, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26364619

RESUMO

BACKGROUND: There is increasing evidence that transcripts or transcript regions annotated as non-coding can harbor functional short open reading frames (sORFs). Loss-of-function experiments have identified essential developmental or physiological roles for a few of the encoded peptides (micropeptides), but genome-wide experimental or computational identification of functional sORFs remains challenging. RESULTS: Here, we expand our previously developed method and present results of an integrated computational pipeline for the identification of conserved sORFs in human, mouse, zebrafish, fruit fly, and the nematode C. elegans. Isolating specific conservation signatures indicative of purifying selection on amino acid (rather than nucleotide) sequence, we identify about 2,000 novel small ORFs located in the untranslated regions of canonical mRNAs or on transcripts annotated as non-coding. Predicted sORFs show stronger conservation signatures than those identified in previous studies and are sometimes conserved over large evolutionary distances. The encoded peptides have little homology to known proteins and are enriched in disordered regions and short linear interaction motifs. Published ribosome profiling data indicate translation of more than 100 novel sORFs, and mass spectrometry data provide evidence for more than 70 novel candidates. CONCLUSIONS: Taken together, we identify hundreds of previously unknown conserved sORFs in major model organisms. Our computational analyses and integration with experimental data show that these sORFs are expressed, often translated, and sometimes widely conserved, in some cases even between vertebrates and invertebrates. We thus provide an integrated resource of putatively functional micropeptides for functional validation in vivo.


Assuntos
Fases de Leitura Aberta , Regiões 3' não Traduzidas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Códon de Terminação , Sequência Conservada , Éxons , Humanos , Camundongos , Peptídeos/química , Biossíntese de Proteínas , Alinhamento de Sequência
15.
Mol Syst Biol ; 11(8): 825, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26253569

RESUMO

Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.


Assuntos
Quimera/genética , Regulação da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Animais , Sequência de Bases , Linhagem Celular , Fibroblastos , Perfilação da Expressão Gênica , Frequência do Gene/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de DNA
16.
Mol Cell Proteomics ; 14(9): 2493-509, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26091700

RESUMO

The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Tubulina (Proteína)/metabolismo , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Proteômica/métodos
17.
Front Plant Sci ; 5: 78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672530

RESUMO

The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

18.
Fitoterapia ; 94: 77-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486985

RESUMO

Chelidonium majus and Corydalis cava are phylogenetically closely related (Papaveraceae family). The medicinal and pharmaceutical interest in these plants is based on their synthesis of pharmaceutically important compounds, such as alkaloids, flavonoids, phenolic acids and proteins. C. majus shoot and C. cava tuber extracts have been used in traditional folk medicine to treat many diseases, such as fungal, bacterial and viral infections, liver disorders, fever, post-traumatic, colic, abdominal and menstrual pains and even cancer. This study attempts to perform a global comparative proteomic analysis of pharmacologically important extracts from these two closely related unsequenced plant species to gain insights into the protein basis of these plant organs and to compare their common and specific proteomic compositions. We used a shotgun proteomic approach combined with label-free protein quantitation according to the exponentially modified protein abundance index (emPAI). In total, a mean number of 228 protein identification results were recorded in C. cava tuber extracts and about 1240 in C. majus shoot extracts. Comparative analysis revealed a similar stress and defense-related protein composition of pharmacologically active plant species and showed the presence of different pathogenesis-related and low molecular inducible antimicrobial peptides. These findings could form the basis for further elucidation of the mechanism of the strong pharmacological activities of these medicinal plant extracts.


Assuntos
Chelidonium/química , Corydalis/química , Proteínas de Plantas/isolamento & purificação , Proteômica , Alcaloides/química , Chelidonium/fisiologia , Corydalis/fisiologia , Flavonoides/uso terapêutico , Medicina Tradicional , Imunidade Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Brotos de Planta/fisiologia , Tubérculos/fisiologia , Plantas Medicinais , Estresse Fisiológico , Espectrometria de Massas em Tandem
19.
Cell ; 156(4): 691-704, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529374

RESUMO

Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose , Complexo 2 de Proteínas Adaptadoras/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Complexos Multiproteicos/metabolismo
20.
Mol Cell Proteomics ; 12(12): 3732-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24030099

RESUMO

During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-ß-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.


Assuntos
Algoritmos , Arabidopsis/química , Microdomínios da Membrana/química , Proteínas de Membrana/metabolismo , Esteróis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Fracionamento Celular , Cromatografia Líquida , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/química , Metiltransferases/deficiência , Metiltransferases/genética , Anotação de Sequência Molecular , Mutação , Células Vegetais/química , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Reprodutibilidade dos Testes , Esteróis/antagonistas & inibidores , Espectrometria de Massas em Tandem , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...